

 Cyber-Physical System Security

Authored by Chloe Gibbs 1

Lab worksheet two
Objectives of Lab

- Set up and configure the water treatment scene in FactoryIO and OpenPLC.
- Set up and configure the bakery scene in FactoryIO and OpenPLC.
- Explore the two scenes and the sensors that they use.

Background
This lab follows on from our last tutorial, where we learnt how to set up and configure the
different components required for a basic factory scene within FactoryIO. In this worksheet
you will learn to create the water disinfection process from within a water treatment plant,
and to create the mixing and baking process from within a bread factory. You will set up the
ladder logic to control each of these scenes and explore the different sensors within each
scene that allow the correct processes to run. The two processes we are creating will allow
you to see the difference between continuous processes and batch processes, including
understanding the different impacts that an attack can have on each type of process.

The FactoryIO scenes and .st files you will build are also available from
http://www.cems.uwe.ac.uk/~pa-legg/uwecyber/cpss/

System requirements and Prerequisites
- Completion of lab one
- Raspberry Pi 3B+ running Raspbian Operating System (32-Bit Released 11.01.2021)
- OpenPLC Runtime V3
- OpenPLC Editor V1.0
- FactoryIO V2.4.6

Task One – Configure the water treatment

Step 1 – Creating the FactoryIO Scene
For our water treatment scene, we are going to take one of FactoryIO’s pre-built scenes and
modify it. The scene we will use for this is scene 3 – Filling Tank (Timers). The scene can be
found under the scenes option once FactoryIO has opened.

Upon opening the scene, it will look similar to the image shown in Figure 1. It consists of a
water tank, and a column with an electric switchboard. The switchboard has a pre-built start
and stop button, and a digital display.

https://eur01.safelinks.protection.outlook.com/?url=http:%2F%2Fwww.cems.uwe.ac.uk%2F~pa-legg%2Fuwecyber%2Fcpss%2F&data=04%7C01%7CChloe3.Gibbs%40live.uwe.ac.uk%7Cef2d3312af0641853cdb08d90b0c68a1%7C07ef1208413c4b5e9cdd64ef305754f0%7C0%7C0%7C637552970204235555%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=FsNGOswJE3UbDswgMu8Hnii7R3ZOd0z%2FTSAFxjIzlAI%3D&reserved=0

 Cyber-Physical System Security

Authored by Chloe Gibbs 2

Figure 1: Scene 3 - Filling Tank (Timers)

To modify this scene for the water treatment scene, you will need to remove the stop
button and add an extra digital display. Once you have done this it should look like the
image in Figure 2, although the exact positioning of the buttons and display does not
matter.

Figure 2: Water treatment scene

To make the start button and display true to our purpose, re-name the start button from
‘Filling’ to ‘Start’. Name the first digital display ‘Chlorine /100mg’ and the second display ‘PH
Level’.

 Cyber-Physical System Security

Authored by Chloe Gibbs 3

Figure 3: Water treatment display labels

Step 2 – Configuring the FactoryIO Server and Addresses
If you completed the previous lab sheet, then the majority of the server will already be set
up correctly for the water treatment scene. Return to the driver screen before making your
way to the configuration panel. Once configuration is open, you will need to change the
register outputs count from zero to two, as shown in Figure 4 below.

Figure 4: Water treatment server configuration

Having configured the FactoryIO server to have the correct amount of holding registers, we
now need to assign each of our parts to an address. Figure 5 contains the addressing
scheme we used within FactoryIO for the water treatment scene.

 Cyber-Physical System Security

Authored by Chloe Gibbs 4

Figure 5: Water treatment addressing

Step 3 – Creating the OpenPLC Ladder Logic
Prior to creating the ladder logic for the water treatment plant, we need to add our
variables and set the equivalent locations to those we set in FactoryIO. Table 1 shows the
addresses used in relation to the FactoryIO addresses.

Table 1: OpenPLC water treatment addressing

FactoryIO Name OpenPLC Name FactoryIO Address OpenPLC Address

Start I_PbFill Input 1 %IX100.1

Tank 1 (Fill Valve) O_FillValve Coil 0 %QX100.0

Tank 1 (Discharge
Valve)

O_DischargeValve Coil 1 %QX100.1

PH Level PH_Level Holding Reg 1 %QW101.1

Chlorine/100mg Chlorine_Level Holding Reg 0 %QW100.1

Alongside our addressed variables, we will have other Boolean variables that help the
program determine what process needs to be activated next. Our ladder logic will not follow
the traditional style of sitting on rails, it will instead be blocks of subsequent code, that each
trigger each other in a specific order.

The first block of code below, is the logic used to start our tank filling upon the start button
being pressed. It uses a timer on function to trigger the fill valve being open for 70 seconds,
if the tank is not currently discharging. This event is also triggered if the restart variable is
triggered.

 Cyber-Physical System Security

Authored by Chloe Gibbs 5

Figure 6: Water treatment starting/restarting block

Our next block of code is what is triggered when the tank filling is complete. It looks rather
complicated but uses a set of nested timer on functions and count up and down functions to
complete the purification process. Once the tank is full, we want to decrease the PH level
from 7 to 5, and increase the chlorine level from 0/100mg to 4/100mg. This then needs to
sit at this level for 8 seconds, prior to returning each variable back to it original state, which
is safe for human consumption. Once the purification process is done, we use this to trigger
the discharge process shown in Figure 8.

Figure 7: Water treatment purification block

The block shown below is used to discharge our water tank for 90 seconds, prior to
restarting the entire purification process. It makes use of another timer on block to control
the time, and uses a restart block to set the discharging variable to false once the process
has complete.

 Cyber-Physical System Security

Authored by Chloe Gibbs 6

Figure 8: Water treatment discharging block

The final block of code within this ladder program is to link the filling and discharging
variables to our filling and discharging valves. This is shown in Figure 9.

Figure 9: Water treatment variable link block

Do not forget to save this logic as a .st file so that it can be used with OpenPLC Runtime.

Step 4 – Configuring the OpenPLC slave device
To enable us to control our factory with this logic, we need to edit our slave device details
on our OpenPLC Runtime instance. As we did with the FactoryIO server details, we need to
set change Runtimes slave device to have 2 holding registers. Save the device with those
settings and you should be able to activate the PLC to control the water treatment scenario.

Task Two – Configure the bakery

Step 1 – Creating the FactoryIO Scene
To create the bakery scene, we are going to open a completely new scene. Once you open a
new scene, you will see an empty factory floor. To begin our scene, you will need to start on
the far-left side of the factory and add a column with an electrical switchboard. You will
need to place a start and a stop button on the switchboard, as this will allow us to control
our batch process.

To create the beginning of our production line, we need to implement a conveyor belt, and
a part emitter. You will need to change the emitter configuration to allow it to be controller
defined, which can be done by right clicking the part once placed. The initial conveyor will
eb longer than our other ingredient conveyors, to allow the space for the production to
begin. At the end of the conveyor, you should implement a stop, and a small distance prior
to that should be a diffuse sensor. For ease of configuration and programming later, we
have named these after the ingredient being used in that section. Table 1 shows the exact

 Cyber-Physical System Security

Authored by Chloe Gibbs 7

parts we have used in our bakery set-up, excluding the column, electrical switchboard, and
buttons.

Table 2: Bakery Parts

Assigned Name of Part Type of Part

Emitter 1 Emitter

Flour Conveyor Belt Conveyor (4m)

Flour Diff Diffuse Sensor

Flour Stop Roller Stop

Yeast Conveyor Belt Conveyor (2m)

Yeast Diff Diffuse Sensor

Yeast Stop Roller Stop

Mixing Conveyor Belt Conveyor (2m)

Mixing Sensor Diffuse Sensor

Salt and Sugar Conveyor Belt Conveyor (2m)

SS Diff Diffuse Sensor

Salt and Sugar Stop Roller Stop

Additives Conveyor Belt Conveyor (2m)

Additives Diff Diffuse Sensor

Additives Stop Roller Stop

Dry Mixing Conveyor Belt Conveyor (2m)

Dry Mixing Sensor Retroreflective Sensor

Dry Mixing Stop Roller Stop

Oil Conveyor Belt Conveyor (2m)

Oil Sensor Diffuse Sensor

Oil Stop Roller Stop

Water Conveyor Belt Conveyor (2m)

Water Sensor Diffuse Sensor

Water Stop Roller Stop

Wet Mixing Conveyor Belt Conveyor (2m)

Wet Mixing Sensor Retroreflective Sensor

Wet Mixing Stop Roller Stop

Splitting Conveyor Belt Conveyor (4m)

Splitting Sensor Retroreflective Sensor

Split Remover

Emitter 2 Emitter

Proofing Oven Conveyor Belt Conveyor (4m)

Proofing Oven Sensor Retroreflective Sensor

Baking Oven Sensor Diffuse Sensor

Connector Conveyor Curved Belt Conveyor

N/A Aligner 1

N/A Aligner 2

 Cyber-Physical System Security

Authored by Chloe Gibbs 8

Baking Oven Conveyor Belt Conveyor (6m)

Stop Conveyor Belt Conveyor (2m)

End Mixing and Baking Remover

As with the first emitter, the second will also need to be set to controller defined. The list of
parts within Table 1, shows the order that the parts are assembled in. The following images
will show how our bakery scene looks, to assist with visualising how it should look.

Figure 10: Bakery section one

Figure 11: Bakery section two

 Cyber-Physical System Security

Authored by Chloe Gibbs 9

Figure 12: Bakery section three

Figure 13: Bakery section four

 Cyber-Physical System Security

Authored by Chloe Gibbs 10

Figure 14: Bakery section five

Figure 15: Bakery section six

 Cyber-Physical System Security

Authored by Chloe Gibbs 11

Figure 16: Bakery - full scene

As you can see within the images, we have used chute conveyors to illustrate where the
ingredients would typically come out.

Step 2 – Configuring the FactoryIO Addresses
Following on from the water treatment set-up, we will need to further reconfigure the
server to make room for all of our parts. As such, you will need to adjust the digital inputs to
16, digital outputs to 26 and the register outputs to 8. This will give us sufficient room for all
our components.

 Cyber-Physical System Security

Authored by Chloe Gibbs 12

Figure 17: FactoryIO bakery server configuration

Having configured the FactoryIO server to have the correct amount of holding registers, we
now need to assign each of our parts to an address. Figure 18 contains the addressing
scheme we used within FactoryIO for the bakery scene. It is important to recognise that
each emitter, has three corresponding parts when it comes to addressing. One part to emit,
and the other two to decide the base and part that it emits to the factory.

 Cyber-Physical System Security

Authored by Chloe Gibbs 13

Figure 18: FactoryIO bakery addressing

It is important to note here that our addressing system with OpenPLC will not match exactly
with the addresses written here. This is due to OpenPLC reserving all addresses with an 8 or
a 9 in them, so those shown at those addresses will need to be adjusted accordingly.

Step 3 – Creating the OpenPLC Ladder Logic
To create the ladder logic for the baker scene, this first thing to do is to add all the initial
variables and their addresses based on the parts we used in FactoryIO. To help with the
addressing, we have named each variable similarly in the ladder logic as we did in FactoryIO,
and Table 2, shown below, will show the part name and its corresponding addresses.

Table 3: OpenPLC bakery scene addressing

Part Name
(FactoryIO)

Part Name (OpenPLC) Addressing
(FactoryIO)

Addressing
(OpenPLC)

Start I_Start Input 1 %IX100.1

Stop I_Stop Input 2 %IX100.2

Flour Conveyor Conveyor_Flour Coil 0 %QX100.0

Yeast Conveyor Conveyor_Yeast Coil 1 %QX100.1

Salt and Sugar
Conveyor

Conveyor_SS Coil 2 %QX100.2

Additives Conveyor Conveyor_Additives Coil 3 %QX100.3

Oil Conveyor Conveyor_Oil Coil 4 %QX100.4

 Cyber-Physical System Security

Authored by Chloe Gibbs 14

Water Conveyor Conveyor_Water Coil 5 %QX100.5

Emitter 1 (Emit) SpawnA_1 Coil 6 %QX100.6

Emitter 1 (Base) SpawnA_2 Holding Reg 0 %QW100.1

Emitter 1 (Part) SpawnA_3 Holding Reg 1 %QW101.1

Emitter 2 (Emit) SpawnB_1 Coil 20 %QX102.4

Emitter 2 (Part) SpawnB_2 Holding Reg 2 %QW102.1

Emitter 2 (Base) SpawnB_3 Holding Reg 3 %QW103.1

Flour Diff FlourDiff Input 3 %IX100.3

Yeast Diff YeastDiff Input 4 %IX100.4

Mixing Sensor MixingSensor Input 5 %IX100.5

SS Diff SSDiff Input 6 %IX100.6

Additives Diff AdditivesDiff Input 7 %IX100.7

Dry Mixing Sensor DryMixingSensor Input 8 %IX101.0

Oil Sensor OilSensor Input 9 %IX101.1

Water Sensor WaterSensor Input 10 %IX101.2

Wet Mixing Sensor WetMixing Sensor Input 11 %IX101.3

Splitting Sensor SplittingSensor Input 12 %IX101.4

Proofing Oven
Sensor

ProofingOvenSensor Input 13 %IX101.4

Baking Oven Sensor BakingOvenSensor Input 14 %IX101.5

Flour Stop FlourStop Coil 7 %QX100.7

Yeast Stop YeastStop Coil 8 %QX101.0

Mixing Conveyor MixingConveyor Coil 9 %QX101.1

Salt and Sugar Stop SSStop Coil 10 %QX101.2

Additives Stop AdditivesStop Coil 11 %QX101.3

Dry Mixing Conveyor DryMixingConveyor Coil 12 %QX101.4

Dry Mixing Stop DryMixingStop Coil 13 %QX101.5

Oil Stop OilStop Coil 14 %QX101.6

Water Stop WaterStop Coil 15 %QX101.7

Wet Mixing
Conveyor

WetMixingConveyor Coil 16 %QX102.0

Wet Mixing Stop WetMixingStop Coil 17 %QX102.1

Splitting Conveyor SplittingConveyor Coil 18 %QX102.2

Split Split Coil 19 %QX102.3

Proofing Oven
Conveyor

ProofingOvenConveyor Coil 21 %QX102.5

Connector Conveyor ConnectorConveyor Coil 22 %QX102.6

Baking Oven
Conveyor

BakingOvenConveyor Coil 23 %QX102.7

Stop Conveyor StopConveyor Coil 24 %QX103.0

End Mixing and
Baking

EndMixing Coil 25 %QX103.1

 Cyber-Physical System Security

Authored by Chloe Gibbs 15

To create our ladder logic, we first need to understand exactly what we want the scene to
do. Upon the user pressing the start button, we want all the ingredient conveyors (Flour,
Yeast, Salt and Sugar, Additives, Oil and Water) to activate and the connecting conveyor,
stop conveyor and final remover to also activate. With these conveyors, and our other ones
we have multiple sensors, which need to trigger stops and our other conveyors. The
following list describes what we want to happen when each sensor is triggered. The sensors
are listed in order of how they are set up in the factory, so are in the correct chronological
order.

- Flour sensor triggered = flour stop activated for 12 seconds
- Yeast sensor triggered = yeast stop activated for 6 seconds
- Mixer sensor triggered = mixer stop activated for 12 seconds
- Salt and sugar sensor triggered = salt and sugar stop activated for 8 seconds
- Additives sensor triggered = additives stop activated for 6 seconds
- Dry mixer sensor triggered = dry mixing stop activated for 14 seconds
- Oil sensor triggered = oil stop activated for 7 seconds
- Water sensor triggered = water stop activated for 9 seconds
- Wet mixer triggered = wet mixing stop activated for 49 seconds and splitting

conveyor activated
- Splitting sensor triggered = activate second emitter and first remover
- Proofing oven sensor triggered = activate proofing oven
- Baking over sensor triggered = activate baking oven

Due to the way OpenPLC works with the variables we have set, traditional ladder logic using
rails has not been used. Instead, we have used order-based ladder logic blocks. The
following figures depict our ladder logic, in the correct order and will give a brief description
on what each block is doing.

At the very top of our program, we set our variables for the emitters. One of these is shown
below, and the binary figures correlate to the parts we want the emitter to produce. The
new variable you can see is to link it to be triggered by another logic block further within the
program. Figure ** is for our second emitter, but the first emitter uses the same logic, with
a larger box being set and a different trigger variable.

Figure 19: Bakery emitter code block

 Cyber-Physical System Security

Authored by Chloe Gibbs 16

We then have four identical blocks of code, each triggering different variables. These blocks
use a reset block to create the start and stop logic for each of our processes that start upon
the batch process being started, such as our ingredient conveyors.

Figure 20: Bakery starting blocks

Following this, we have blocks that activate the different processes once a sensor has been
triggered. The blocks use a time pulse to activate the stops or the conveyors for a given
period. These blocks are repeated and modified to complete all the necessary processes in
our bakery.

Figure 21: Bakery process blocks

Do not forget to save the logic as a .st file for use on the OpenPLC instance.

 Cyber-Physical System Security

Authored by Chloe Gibbs 17

Step 4 – Configuring the OpenPLC slave device
To enable us to control our factory with this logic, we need to edit our slave device details
on our OpenPLC Runtime instance. As we did with the FactoryIO server details, we need to
set Runtime’s slave device to have 16 discrete inputs, 26 coils and 4 holding registers. Save
the device with those settings and you should be able to activate the PLC to control the
bakery scenario.

Task Three – Explore the water treatment scene and sensors
Having built the water treatment scene, take some time to experiment with the factory.
What happens if you were to force a value on one of the actuators? Does it make a
difference if you change the timing values on the filling or discharging?

Task Four – Explore the bakery scene and sensors
Similarly, to the water treatment scene, take some time to full explore the bakery scene.
Can you think of any small changes you could make to prevent part of the scene from
working correctly? Could you implement further sensors within the scene?

Takeaways
Having completed this worksheet you should have been able to build both a bakery and a
water treatment scenario, and create some ladder logic that controls it. You should have an
understanding of the amount of sensors that go into a factory and be able to set these
different factories up correctly to be controlled by OpenPLC.

Further reading
Cyber-Physical Systems Security Knowledge Area Issue 1.0 – available from
https://www.cybok.org/knowledgebase/

FactoryIO – available from https://docs.factoryio.com/

FactoryIO Emitter details – available from
https://docs.factoryio.com/manual/parts/emitter/

https://www.cybok.org/knowledgebase/
https://docs.factoryio.com/
https://docs.factoryio.com/manual/parts/emitter/

